
OH

1. Place the following halides in order of increasing reactivity in an SN1 process. (1=least reactive, 3=most reactive) (3 pts.)

2. Place the following halides in order of increasing reactivity in an SN2 process. (1=least reactive, 3=most reactive) (3 pts.)

3. Place the following alkenes in order of increasing stability. (1=least stable, 3=most stable) (3 pts.)

4. Place a Y in the box below any halide that will form a useful Grignard reagent and an N below any that will not. (4 pts.)

5. Answer the following questions for the molecule below and place the answers in the appropriate boxes. (i) How many distinct types of protons are present in the molecule? (ii) How many distinct carbons are present? (iii) and (iv)What are the theoretically predicited multiplicities (splitting patterns) of the signals for protons a and b? (v) What is the multiplicity of the signal for carbon c in the proton-coupled 13C NMR? (5 pts.)

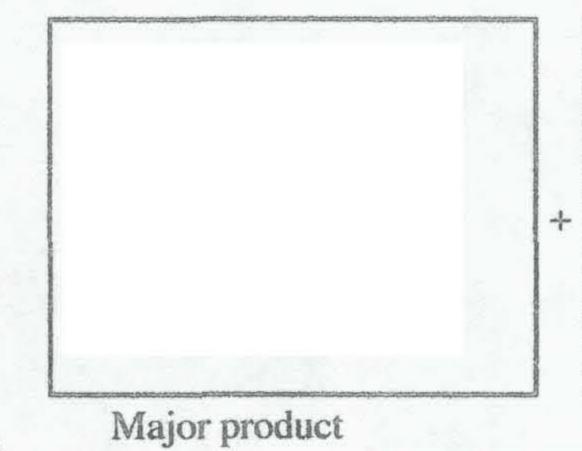
(i) # of proton types

C. Reactions: Total = 30 points, 6 points each
Please provide the major product in the answer box unless indicated otherwise. Indicate stereochemistry with wedges and dashes if applicable. Partial credit is awarded only when intermediate products in a multistep reaction are shown below the reaction.

Note:MCPBA = m-chloroperbenzoic acid

2.

Note:PCC = pyridinium chlorochromate



Br

4.

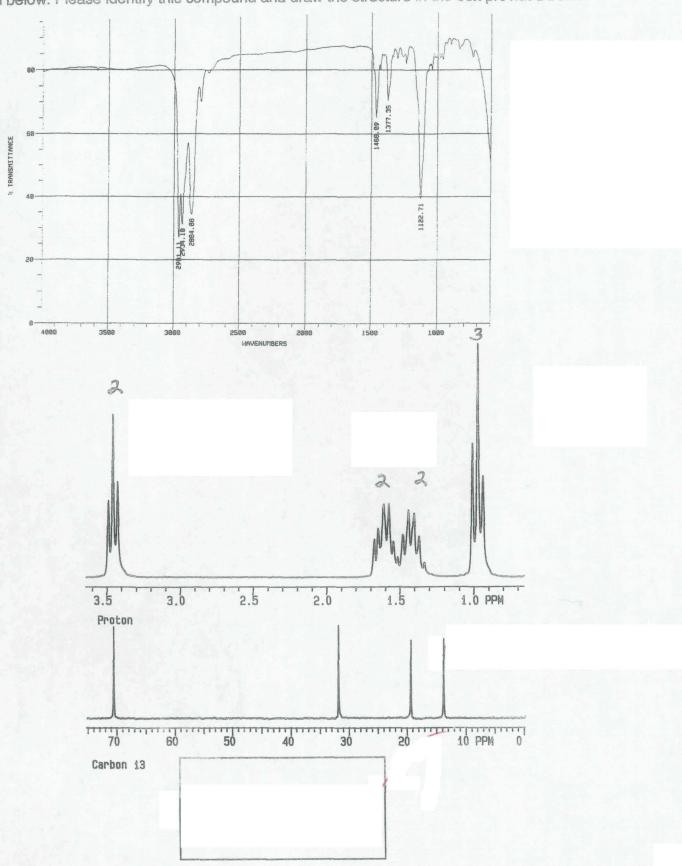
NBS /Light/ 0°C

Minor Product

Note: NBS = N-bromosuccinimide

5. HANNOH

1. PBr₃


2. NaCN / acetone

D. Mechanism: (12 points)
Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges.
Do not show transition states!

E. Synthesis: 12 Points
Synthesize the molecule below using any of the following reagents: cyclohexane and alcohols, alkanes, alkenes, and/or alkynes of two carbons or less, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

F. Spectroscopy: 12 Points

A compound with the formula C₈H₈O exhibits the IR, ¹H NMR and proton decoupled ¹³C NMR spectra shown below. Please identify this compound and draw the structure in the box provided below.

Sp 2010 Exam 1

TABLE 13.3 Approximate proton chemical shifts

TYPE OF PROTON	CHEMICAL SHIFT (δ, ppm)		
1° Alkyl, RCH ₃	0.8-1.0		
2° Alkyl, RCH ₂ R	1.2-1.4		
3° Alkyl, R ₃ CH	1.4-1.7		
Allylic, R ₂ C=C-CH ₃	1.6-1.9		
Ketone, RCCH ₃	2.1-2.6		
Benzylic, ArCH ₃	2.2-2.5		
Acetylenic, RC≡CH	2.5-3.1		
Alkyl iodide, RCH 2I	3.1-3.3		
Ether, ROCH ₂ R	3.3-3.9		
Alcohol, HOCH ₂ R	3.3-4.0		
Alkyl bromide, RCH ₂ Br	3.4-3.6		
Alkyl chloride, RCH ₂ Cl	3.6-3.8		
Vinylic, R ₂ C=CH ₂	4.6-5.0		
Vinylic, R ₂ C=CH	5.2-5.7		
Aromatic, ArH	6.0-9.5		
Aldehyde, RCH	9.5-9.6		
Alcohol hydroxyl, ROH	0.5-6.0°		
Amino, R-NH ₂	1.0-5.0 ^a		
Phenolic, ArOH	4.5-7.74		
Carboxylic, RCOH	10-134		

^e The chemical shifts of these protons vary in different solvents and with temperature and concentration.

TABLE 13.4 Approximate carbon-13 chemical shifts

TYPE OF CARBON ATOM	CHEMICAL SHIFT (δ, ppm	
1° Alkyl, RCH ₃	0-40	
2° Alkyl, RCH ₂ R	10-50	
3° Alkyl, RCHR ₂	15-50	
Alkyl halide or amine, $-C - X \left(X = Cl, Br, or N - \right)$	10-65	
Alcohol or ether, — C—O	50-90	
Alkyne, —C≡	60-90	
Alkene, C=	100-170	
Aryl, C—	100-170	
Vitriles, —C≡N Q	120-130	
Amides, $-\stackrel{\circ}{C}-\stackrel{\circ}{N}-$	150-180	
Carboxylic acids, esters, — C—O	160-185	
Aldehydes, ketones, — C—	182-215	

TABLE 13.2 Characteristic infrared absorptions of groups

GR	ROUP		FREQUENCY RANGE (cm ⁻¹)		INTENSITY		
A.	. Alkyl						
	C—H (stretching)			2853-2962	(m-s)		
	Isopropyl, —CH(CH	$\{1_3\}_2$		1380-1385	(s)		
			and	1365-1370	(s)		
	tert-Butyl, —C(CH	3)3	and	1385 – 1395 ~ 1365	(m) (s)		
R	Alkenyl						
	C—H (stretching)			3010-3095	(m)		
	C=C (stretching)			1620-1680	(v)		
	R-CH=CH ₂			985-1000	(s)		
	K CII CII2		and	905-920	(s)		
	R ₂ C=CH ₂	(out-of-plane		880-900	(s)		
	cis-RCH=CHR	C—H bendings)		675-730	(s)		
	trans-RCH=CHR			960-975	(s)		
C.	Alkynyl						
	≡C-H (stretching	()		~ 3300	(s)		
	C≡C (stretching)			2100-2260	(v)		
D.	Aromatic						
	Ar-H (stretching)			~ 3030	(v)		
	Aromatic substitution type						
	(C-H out-of-plane Monosubstituted	bendings)		690-710	(very s)		
	Monosubstituted		and	730-770	(very s)		
	o Disubstituted			735-770	(s)		
	m Disubstituted			680-725	(s)		
	p Disubstituted		and	750-810 800-840	(very s) (very s)		
E.	Alcohols, Phenols, Acids	and Carboxylic					
	O-H (stretching)						
	Alcohols, phenol	s (dilute solutions)		3590-3650	(sharp, v		
	Alcohols, phenol	s (hydrogen bonded)		3200-3550	(broad, s		
	Carboxylic acids	(hydrogen bonded)		2500-3000	(broad, v		
F.	Aldehydes, Ketone Carboxylic Acids	s, Esters, and					
	C=O (stretching)			1630-1780	(s)		
	Aldehydes			1690-1740	(s)		
	Ketones			1680-1750	(s)		
	Esters			1735 – 1750	(s)		
	Carboxylic acids			1710-1780	(s)		
	Amides			1630-1690	(s)		
G.	Amines						
	N—H			3300-3500	(m)		
H.	Nitriles						
	C=N			2220-2260	(m)		

^{*} Abbreviations: s = strong, m = medium, w = weak, v = variable, ~ = approximately.