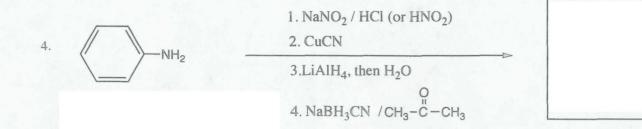
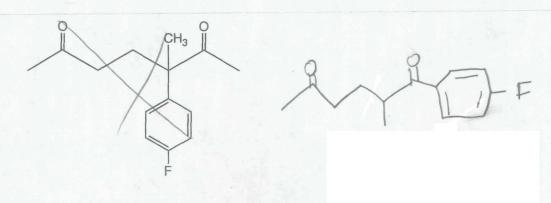

| A | Mor | ner | ncla | Ŷ1.15 | 100 | (1 | 5 | niog | ts) |
|---|-----|-----|------|-------|-----|----|---|------|-----|
|   |     |     |      |       |     |    |   |      |     |

A. Nomenciature: (15 points)
Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.


| (CH <sub>3</sub> ) <sub>2</sub> N ,,,,,CH <sub>3</sub> |  |
|--------------------------------------------------------|--|
|                                                        |  |
| 0                                                      |  |

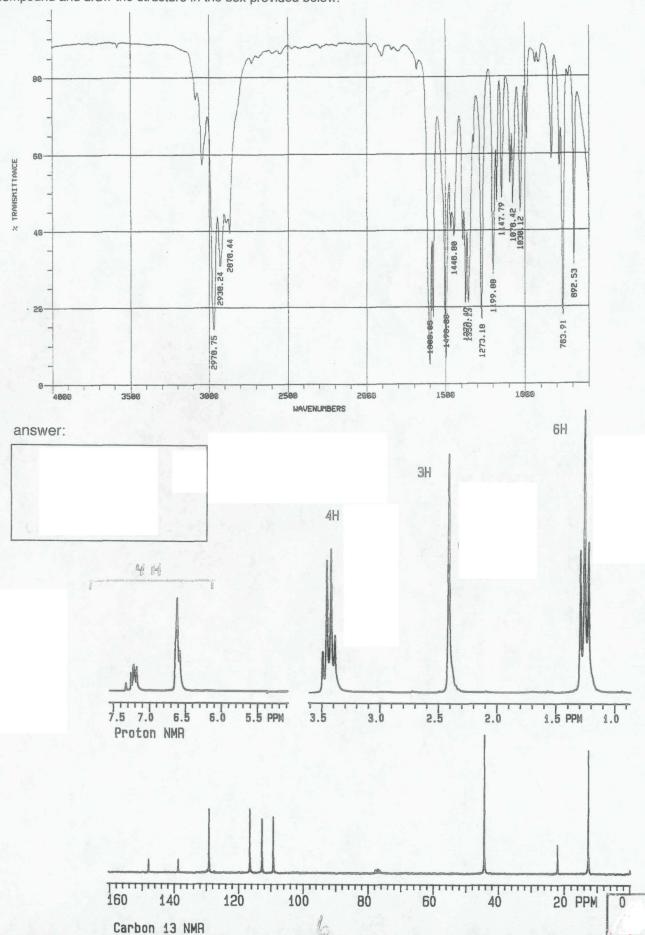
B. Reactions: Total = 40 points, 8 points each

Please provide the starting material or major product in the answer box. Be sure your drawing indicates stereochemistry if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.




3. 
$$\begin{array}{c}
1.(CH_{3}CH_{2})_{2}NH / H^{+} \\
0 \\
2. CH_{3}-C-CI \\
\hline
3. H_{3}O^{+}
\end{array}$$




C. Mechanism: (15 points)
Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". Remember to show only one step at a time. Show all intermediates and all formal charges.
When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.

D. Synthesis: 15 Points
Synthesize the molecule below using any of the following reagents: benzene, any alkanes, alkenes, or alcohols of three carbons or less, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.



## E. Spectroscopy: 15 Points

A compound with the formula  $C_{11}H_{17}N$  exhibits the IR, HNMR and proton decoupled HR spectra shown below. Please identify this compound and draw the structure in the box provided below.



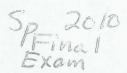



TABLE 13.3 Approximate proton chemical shifts

| TYPE OF PROTON                              | CHEMICAL SHIFT (δ, ppm |
|---------------------------------------------|------------------------|
| 1° Alkyl, RCH <sub>3</sub>                  | 0.8-1.0                |
| 2° Alkyl, RCH <sub>2</sub> R                | 1.2-1.4                |
| 3° Alkyl, R <sub>3</sub> CH                 | 1.4-1.7                |
| Allylic, R <sub>2</sub> C=C-CH <sub>3</sub> | 1.6-1.9                |
| Ketone, RCCH <sub>3</sub>                   | 2.1-2.6                |
| Benzylic, ArCH <sub>3</sub>                 | 2.2-2.5                |
| Acetylenic, RC≡CH                           | 2.5-3.1                |
| Alkyl iodide, RCH <sub>2</sub> I            | 3.1-3.3                |
| Ether, ROCH <sub>2</sub> R                  | 3.3-3.9                |
| Alcohol, HOCH <sub>2</sub> R                | 3.3-4.0                |
| Alkyl bromide, RCH <sub>2</sub> Br          | 3.4-3.6                |
| Alkyl chloride, RCH <sub>2</sub> Cl         | 3.6-3.8                |
| Vinylic, R <sub>2</sub> C=CH <sub>2</sub>   | 4.6-5.0                |
| Vinylic, R <sub>2</sub> C=CH                | 5.2-5.7                |
| Aromatic, ArH                               | 6.0-9.5                |
| Aldehyde, RCH                               | 9.5-9.6                |
| Alcohol hydroxyl, ROH                       | 0.5-6.0°               |
| Amino, R—NH <sub>2</sub>                    | 1.0-5.0°               |
| Phenolic, ArOH                              | 4.5-7.7°               |
| Carboxylic, RCOH                            | 10-13°                 |

<sup>&</sup>lt;sup>o</sup> The chemical shifts of these protons vary in different solvents and with temperature and concentration.

TABLE 13.4 Approximate carbon-13 chemical

| TYPE OF CARBON ATOM                                               | CHEMICAL SHIFT (δ, ppm) |
|-------------------------------------------------------------------|-------------------------|
| 1° Alkyl, RCH <sub>3</sub>                                        | 0-40                    |
| 2° Alkyl, RCH <sub>2</sub> R                                      |                         |
| 3° Alkyl, RCHR <sub>2</sub>                                       | 10-50<br>15-50          |
| Alkyl halide or amine, $-C - X \left( X = Cl, Br, or N - \right)$ | 10-65                   |
| Alcohol or ether, $-\frac{1}{C}$ O                                | 50-90                   |
| Alkyne, —C≡                                                       | 60-90                   |
| Alkene, C=                                                        | 100-170                 |
| uryl, C-                                                          | 100-170                 |
| Vitriles, —C≡N                                                    | 120-130                 |
| Amides, —C—N—                                                     | 150-180                 |
| Carboxylic acids, esters, — C—O                                   | 160-185                 |
| ldehydes, ketones, — C—                                           | 182-215                 |

TABLE 13.2 Characteristic infrared absorptions of groups

| GROUP                                    |                                   | NGE (cm <sup>-1</sup> ) | INTENSITY           |                      |  |  |
|------------------------------------------|-----------------------------------|-------------------------|---------------------|----------------------|--|--|
| A. Alkyl                                 |                                   |                         |                     |                      |  |  |
| C—H (stretching)                         |                                   |                         | 2853-2962           | (m-s)                |  |  |
| Isopropyl, —CH(C                         | H <sub>2</sub> ) <sub>2</sub>     |                         | 1380-1385           | (s)                  |  |  |
|                                          | 3/2                               | and                     | 1365-1370           | (s)                  |  |  |
| tert-Butyl, —C(CH                        | 3)3                               | and                     | 1385-1395<br>~ 1365 | (m)<br>(s)           |  |  |
| B. Alkenyl                               |                                   |                         |                     |                      |  |  |
| C—H (stretching)                         |                                   |                         | 3010-3095           | (m)                  |  |  |
| C=C (stretching)                         |                                   |                         | 1620-1680           | (v)                  |  |  |
| R-CH=CH <sub>2</sub>                     | Ti .                              |                         | 985-1000            | (s)                  |  |  |
|                                          |                                   | and                     | 905-920             | (s)                  |  |  |
| R <sub>2</sub> C=CH <sub>2</sub>         | (out-of-plane                     |                         | 880-900             | (s)                  |  |  |
| cis-RCH=CHR                              | C—H bendings)                     |                         | 675-730             | (s)                  |  |  |
| trans-RCH=CHR                            |                                   |                         | 960-975             | (s)                  |  |  |
|                                          | В                                 |                         |                     | (4)                  |  |  |
| C. Alkynyl                               |                                   |                         |                     |                      |  |  |
| ≡C−H (stretchin                          | g)                                |                         | ~ 3300              | (s)                  |  |  |
| C≡C (stretching)                         |                                   |                         | 2100-2260           | (v)                  |  |  |
| D. Aromatic                              |                                   |                         |                     |                      |  |  |
| Ar-H (stretching)                        |                                   |                         | ~ 3030              | (v)                  |  |  |
| Aromatic substitution                    |                                   |                         |                     |                      |  |  |
| (C-H out-of-plane                        |                                   |                         |                     |                      |  |  |
| Monosubstituted                          |                                   | and                     | 690-710<br>730-770  | (very s)<br>(very s) |  |  |
| o Disubstituted                          |                                   | and                     | 735-770             | (s)                  |  |  |
| m Disubstituted                          |                                   | n d                     | 680-725             | (s)                  |  |  |
| p Disubstituted                          |                                   | and                     | 750-810<br>800-840  | (very s)<br>(very s) |  |  |
|                                          | Alcohols, Phenols, and Carboxylic |                         |                     |                      |  |  |
| Acids                                    |                                   |                         |                     |                      |  |  |
| O—H (stretching)                         |                                   |                         |                     |                      |  |  |
|                                          | s (dilute solutions)              |                         | 3590-3650           | (sharp, v            |  |  |
|                                          | s (hydrogen bonded)               |                         | 3200-3550           | (broad, s            |  |  |
| Carboxylic acids                         | (hydrogen bonded)                 |                         | 2500-3000           | (broad, v            |  |  |
| F. Aldehydes, Ketone<br>Carboxylic Acids | s, Esters, and                    |                         |                     |                      |  |  |
| C=O (stretching)                         |                                   |                         | 1630-1780           | (s)                  |  |  |
| Aldehydes                                |                                   |                         | 1690 – 1740         | (s)                  |  |  |
| Ketones                                  |                                   |                         | 1680-1750           | (s)                  |  |  |
| Esters                                   |                                   |                         | 1735 – 1750         | (s)                  |  |  |
| Carboxylic acids Amides                  |                                   |                         | 1710-1780           | (8)                  |  |  |
| Minnes                                   |                                   |                         | 1630-1690           | (s)                  |  |  |
| G. Amines                                |                                   |                         |                     |                      |  |  |
| N—H                                      |                                   |                         | 3300-3500           | (m)                  |  |  |
| H. Nitriles                              |                                   |                         |                     |                      |  |  |
| C≡N                                      |                                   |                         | 2220-2260           | (m)                  |  |  |