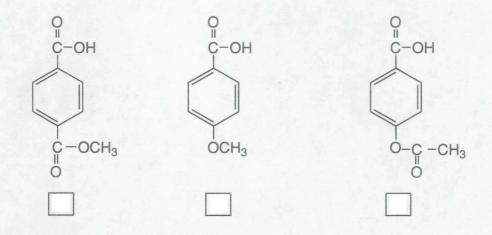
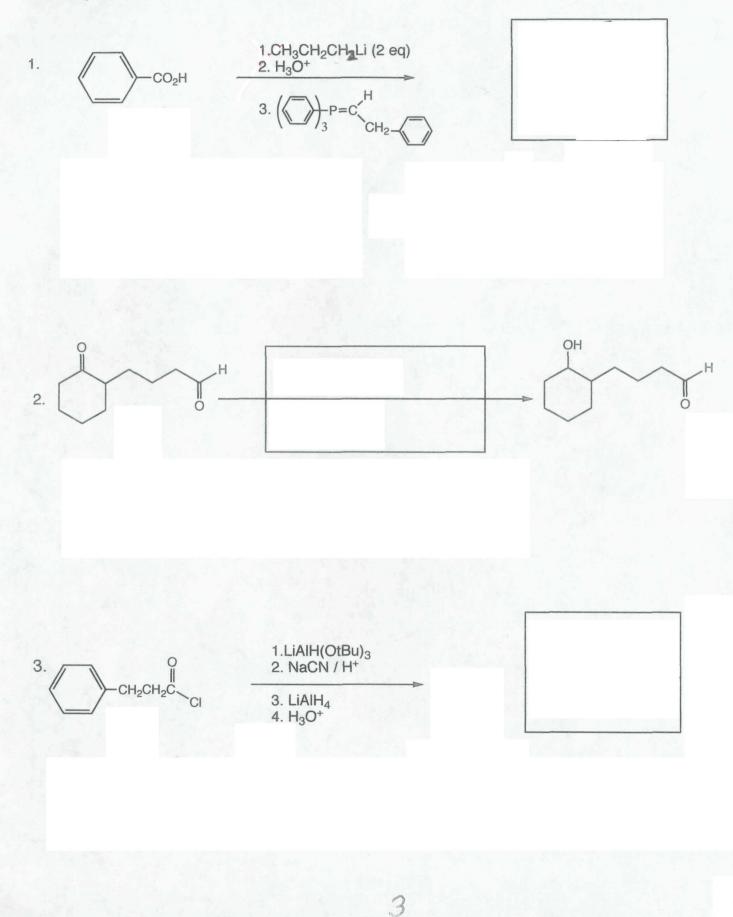

Spring 2010 - Exam 3

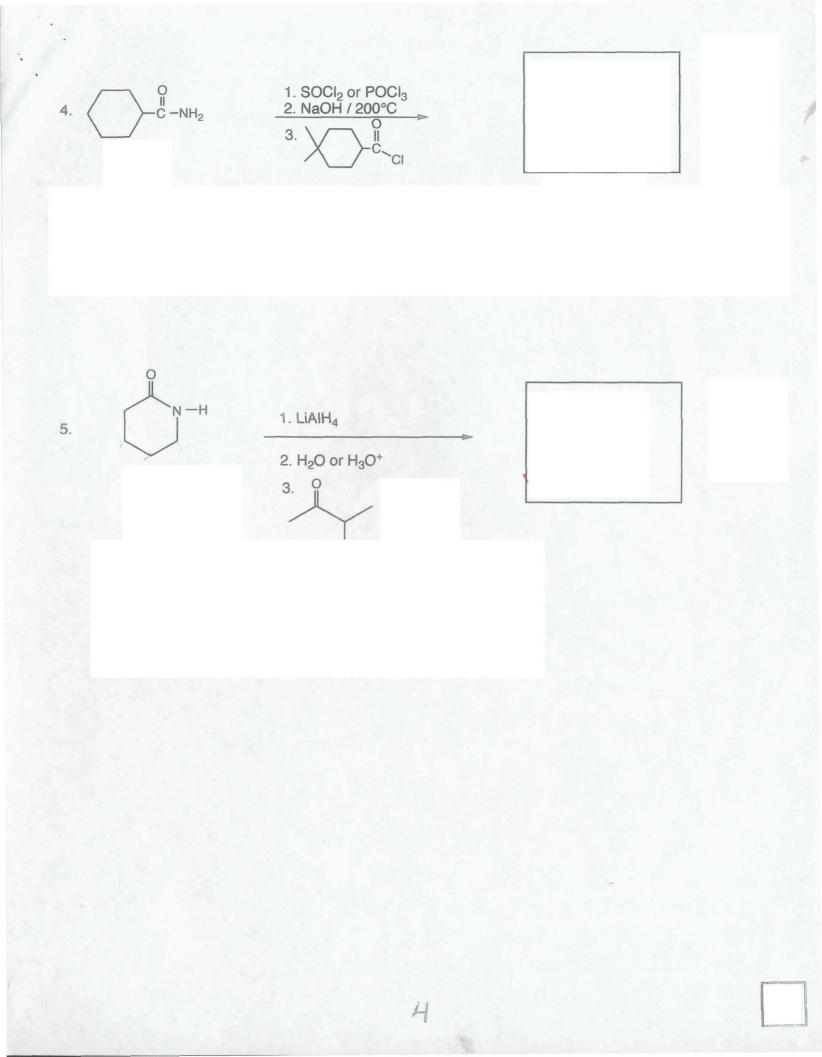
4


A. Nomenclature: (16 points) Give an acceptable IUPAC name for each of the following compounds. Be sure to indicate the stereochemistry where appropriate.

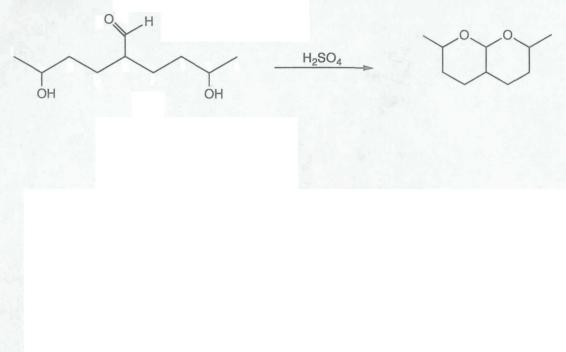
B. Facts: 9 points (3 points each)
1. Rank the following compounds in order of increasing rate of nucleophilic acyl substitution. (1 = slowest rate, 3 = fastest rate)

2. Rank the following compounds in order of increasing acidity. (1=least acidic, 3=most acidic)


3. 1. Rank the following compounds in order of increasing rate of nucleophilic addition. (1 = slowest rate, 3 = fastest rate)

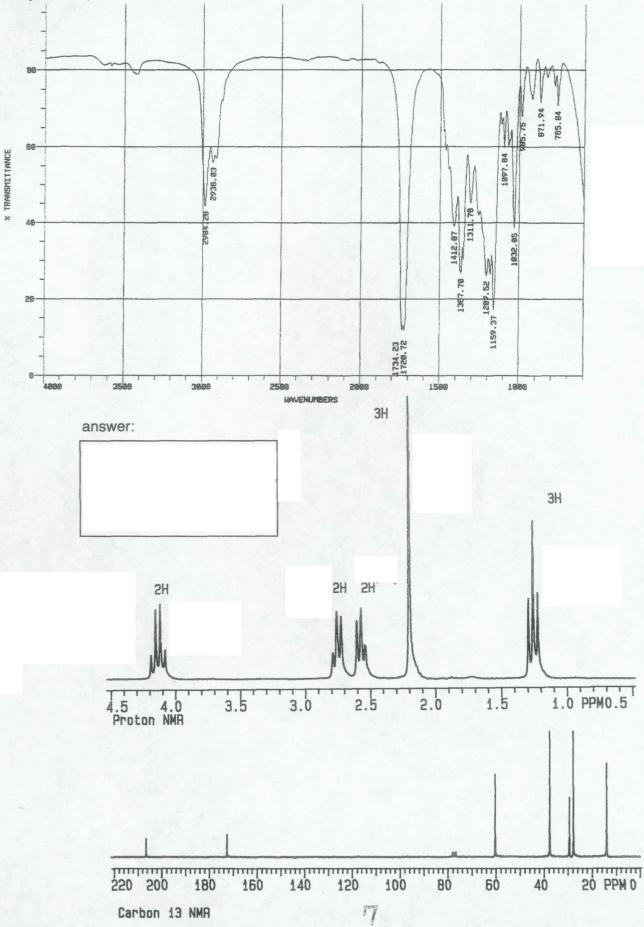


2


C. Reactions: Total = 40 points, 8 points each

Please provide the reagents or major product in the answer box. Be sure your drawing indicates **stereochemistry** if applicable. Partial credit is awarded only when intermediate products in a multi-step reaction are shown below the reaction.

D. Mechanism: (12 points) Provide a clear mechanism to explain the formation of the product. Use curved arrows to indicate "electron flow". <u>Remember to show only one step at a time.</u> Show all intermediates and all formal charges. When more than one resonance contributor may be drawn, be sure to draw the most stable contributor.



E. Synthesis: 12 Points
Synthesize the molecule below using any of the following reagents: benzene, any alkanes, alkenes, or alcohols of three carbons or less, any inorganic reagents, any oxidizing or reducing agents, and any peroxyacids.

H₃C CH₃ N-CH₂CH₃ H₃C ĊH₂

E. Spectroscopy: 11 Points

A compound with the formula $C_7H_{12}O_3$ exhibits the IR,¹H NMR and proton decoupled ¹³C NMR spectra shown below. Please identify this compound and draw the structure in the box provided below.

Sp 2010 Exam 3

TABLE 13.3 Approximate proton chemical shifts

TYPE OF PROTON	CHEMICAL SHIFT (8, ppm)			
1° Alkyl, RCH ₃	0.8-1.0			
2° Alkyl, RCH ₂ R	1.2-1.4			
3° Alkyl, R ₃ CH	1.4-1.7			
Allylic, $R_2C = C - CH_3$ R	1.6-1.9			
Ketone, RCCH ₃	2.1-2.6			
Benzylic, ArCH ₃	2.2-2.5			
Acetylenic, RC≡CH	2.5-3.1			
Alkyl iodide, RCH ₂ I	3.1-3.3			
Ether, ROCH ₂ R	3.3-3.9			
Alcohol, HOCH ₂ R	3.3-4.0			
Alkyl bromide, RCH ₂ Br	3.4-3.6			
Alkyl chloride, RCH ₂ Cl	3.6-3.8			
Vinylic, $R_2C = CH_2$	4.6-5.0			
Vinylic, $R_2C = CH$	5.2-5.7			
Aromatic, ArH	6.0-9.5			
Aldehyde, RCH O	9.5-9.6			
Alcohol hydroxyl, ROH	0.5-6.0°			
Amino, R—NH ₂	1.0-5.0°			
Phenolic, ArOH	4.5-7.7ª			
Carboxylic, RCOH O	10-13ª			

^e The chemical shifts of these protons vary in different solvents and with temperature and concentration.

TABLE	13.4	Approximate	carbon-13	chemical shifts

TYPE OF CARBON ATOM	CHEMICAL SHIFT (&, ppm)
1° Alkyl, RCH ₃	0-40
2° Alkyl, RCH ₂ R	10-50
3° Alkyl, RCHR ₂	15-50
Alkyl halide or amine, $- \bigvee_{l}^{l} - X \left(X = Cl, Br, or N - \right)$	10-65
Alcohol or ether, $-C - O$	50-90
Alkyne, −C≡	60-90
Alkene, C=	100-170
Aryl, C-	100-170
Nitriles, $-C \equiv N$	120-130
Amides, $-C - N - 0$	150-180
Carboxylic acids, esters, $-C - O$	160-185
Aldehydes, ketones, — C—	182-215

TABLE 13.2 Characteristic infrared absorptions of groups

GROUP		FREQUENCY RANGE (cm ⁻¹)		INTENSITY
A. Alkyl				
C-H (stretching)			2853-2962	(m-s)
Isopropyl, —CH(CH	ł ₃) ₂	and	1380-1385 1365-1370	(s) (s)
tert-Butyl, —C(CH ₂	,) ₃	and	1385-1395 ~ 1365	(m) (s)
B. Alkenyl				
C—H (stretching)			3010-3095	(m)
C = C (stretching)			1620-1680	(v)
R-CH=CH ₂		and	985 - 1000 905 - 920	(s) (s)
R ₂ C=CH ₂	(out-of-plane		880-900	(s)
cis-RCH=CHR	C-H bendings)		675-730	(s)
trans-RCH=CHR			960-975	(s)
-	8			
C. Alkynyl ≡C−H (stretching			~ 3300	(s)
$C \equiv C$ (stretching)	, ·		2100-2260	(v)
			2100 2200	(.,
D. Aromatic			2020	(11)
Ar—H (stretching)			~ 3030	(v)
Aromatic substitutio (C-H out-of-plane				
Monosubstituted			690-710	(very s)
o Disubstituted		and	730-770 735-770	(very s) (s)
m Disubstituted			680-725	(s)
		and	750-810	(very s)
p Disubstituted			800-840	(very s)
E. Alcohols, Phenols, Acids	and Carboxylic			
O-H (stretching)				
Alcohols, phenols	s (dilute solutions)		3590-3650	(sharp, v)
Alcohols, phenols	(hydrogen bonded)		3200-3550	(broad, s)
Carboxylic acids	(hydrogen bonded)		2500-3000	(broad, v
F. Aldehydes, Ketone Carboxylic Acids	s, Esters, and			
C=O (stretching)			1630-1780	(s)
Aldehydes			1690-1740	(s)
Ketones			1680-1750	(s)
Esters			1735-1750	(s)
Carboxylic acids			1710-1780	(s)
Amides			1630-1690	(s)
G. Amines				
N—H			3300-3500	(m)
H. Nitriles				
C≡N			2220-2260	(m)

° Abbreviations: s = strong, m = medium, w = weak, v = variable, \sim = approximately.